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ABSTRACT: Although compositional tuning of metal nano-
particles (NPs) has been extensively investigated, possible
control of the catalytic performance through bulk-structure
tuning is surprisingly overlooked. Here we report that the bulk
structure of intermetallic ZrPt3 NPs can be engineered by
controlled annealing and their catalytic performance is
significantly enhanced as the result of bulk-structural trans-
formation. Chemical reduction of organometallic precursors
yielded the desired ZrPt3 NPs with a cubic FCC-type structure
(c-ZrPt3 NPs). The c-ZrPt3 NPs were then transformed to a
different phase of ZrPt3 with a hexagonal structure (h-ZrPt3 NPs) by annealing at temperatures between 900 and 1000 °C. The
h-ZrPt3 NPs exhibited higher catalytic activity and long-term stability than either the c-ZrPt3 NPs or commercial Pt/C NPs
toward the electro-oxidation of ethanol. Theoretical calculations have elucidated that the enhanced activity of the h-ZrPt3 NPs is
attributed to the increased surface energy, whereas the stability of the catalyst is retained by the lowered bulk-free-energy.

KEYWORDS: catalysts, intermetallic compounds, bulk structural transformation, surface energy,
polymer membrane electrolyte fuel cells

1. INTRODUCTION

The increasing interest in renewable energies has highlighted
the centrality of catalytic metal nanoparticles (NPs) in
sustainable energy-conversion technologies including photo-
catalytic water splitting and polymer-electrolyte membrane fuel
cells (PEMFCs).1−6 In particular, confocal attention has been
paid to alloy NPs consisting of platinum-group-metals (PGMs)
and transition metals or metalloids which exhibit high catalytic
performance compared with the NPs of prestine PGMs.7−9

NiPt3 and CoPt3 NPs are highly active toward the electro-
reduction of oxygen (ORR).10,11 SnPt3, CuPt3, and Ru−Pt NPs
show good activity toward the electro-oxidation of small
organic molecules such as methanol.12−14 Currently, most of
the catalytic functionalities of alloy NPs are controlled only
through the alloy composition, where the constituent atoms are
distributed on the crystal lattice of the FCC-type- or FCC-
derivative structures.15−19 Possible control of the catalytic
performance of alloys through bulk-structure tuning has not
been fully explored except for some pioneering works,20−23

although a variety of functionalities of alloys, such as
martensitic hardening and shape-memory effects,24−26 signifi-
cantly depend on the bulk structure and can be controlled by
promoting bulk-structural transformation through external
stimuli: pressure, temperature, and magnetic fields. Rational
promotion of bulk-structural transformation of alloy NPs could
realize enhanced activity and long-term stability, which are
often mutually exclusive, because the bulk structure is not
sensitive to surface segregation or impurity poisoning that
degrades catalytic/sensing performance of the surface.27

Herein, we report that the catalytic performance of alloy NPs
can be significantly enhanced by promoting bulk-structural
transformation (Scheme 1). We have synthesized NPs of an
ordered alloy (intermetallic compound) of an early d-metal and
Pt, ZrPt3 (ZrPt3 NPs), and tailored their bulk structure by
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controlled annealing. It is known that the bulk structure of Zr-
based alloys is sensitive to external stimuli such as pressure or
temperature, often exhibiting shape-memory effects.28 We have
demonstrated that a temperature-induced structural trans-
formation in the ZrPt3 NPs from cubic to hexagonal structures
lowers the bulk free energy and, in turn, elevates the surface
energy. The catalytic activity and stability of the ZrPt3 NPs are
significantly enhanced through the structural transformation, as
the result of the elevated surface energy and the lowered bulk
free energy.
The ZrPt3 NPs with the cubic AuCu3-type structure (c-ZrPt3

NPs, Fm3̅m, a = 0.399 nm) were synthesized by coreduction of
dichloro-(1,5-cyclooctadiene) platinum(II) and zirconium(IV)
tetrachloride (see the Supporting Information for the synthetic
details).29 The c-ZrPt3 NPs were then structurally transformed
to hexagonally ordered h-ZrPt3 NPs (space group P63/mmc, a =
0.562 nm, c = 0.921 nm) with the TiNi3-type structure by
vacuum annealing at 1000 °C.30 Importantly, the h-ZrPt3 NPs
exhibited better catalytic performance than either the c-ZrPt3
NPs or the commercial carbon-supported Pt NPs (Pt/C), in
terms of stability to repeated electrochemical cycles and
electrocatalytic activity toward the oxidation of ethanol.
Theoretical calculations have elucidated that the structural
transformation significantly increases the surface energy, which
results in the enhanced catalytic performance of the h-ZrPt3
NPs.

2. EXPERIMENTAL DETAILS
2.1. Materials. All the chemicals were used as purchased without

further purification. Dichloro-(1,5-cyclooctadiene) platinum(II) (Pt-
(COD)Cl2), zirconium(IV) chloride (ZrCl4, anhydrous powder,
99.995% trace metals basis), superhydride solution (LiEt3BH, 1.0 M
in dry tetrahydrofuran (THF)) were purchased from Sigma-Aldrich.
Diethylene glycol dimethyl ether (diglyme, anhydrous, 99.5%) and
hexane (anhydrous, 95%) were also purchased from Sigma-Aldrich.
The chemicals and solvents were always treated in a dry Ar
atmosphere. Pt/C (20% mass loading) catalyst was obtained from
Fuel Cell Store.
2.2. Methods. 2.2.1. Synthesis of Zr−Pt Alloy and ZrPt3

Intermetallic Nanoparticles. An aliquot of 0.12 mmol of the Pt
precursor (Pt(COD)Cl2) and 0.04 mmol of the Zr precursor (ZrCl4)
were dissolved in 30 mL of diglyme in an Ar atmosphere. The solution
turned black upon addition of 1 mmol of superhydride solution. The
solution was transferred to a stainless-steel pressure vessel which was
equipped to an external high-pressure Ar source (Taiatsu Techno Co.
Ltd.). The inner pressure of the vessel was first raised to 0.5 MPa using
pressurized pure Ar gas (99.9999%), and then the vessel was placed in
an oil bath to keep the temperature at 200 °C. The solution in the
vessel was continuously stirred for 2 h with a magnetic spin bar. After 2
h, the vessel was removed from the oil bath, cooled to room
temperature, and transferred to a glovebox which was filled with
purified Ar gas (O2 and H2O concentrations < 0.1 ppm). A black,
turbid solution in the vessel was transferred to a centrifuge tube

without exposed to air and centrifuged at 6000 rpm for 10 min to
precipitate black, fine powder. The product powder was washed with
diglyme and hexane three times each without being exposed to air and
dried under vacuum. The product was finally annealed for 15 h at 500
°C under vacuum to get Zr−Pt alloy NPs. The Zr−Pt alloy NPs
converted to cubic ZrPt3 NPs upon 15 h vacuum annealing at 900 °C.
c-ZrPt3 NPs structurally converted to h-ZrPt3,when annealed at 1000
°C for 20 h under vacuum.

2.2.2. Synthesis of Bulk ZrPt3. Polycrystalline bulk samples of
intermetallic ZrPt3 were synthesized with an arc furnace in a pure Ar
atmosphere (99.9999%). Prior to the synthesis, the arc furnace was
evacuated to a vacuum level lower than 10 mPa and backfilled with
pure Ar. All the starting materials were purchased from Furuya
Kinzoku Co. An aliquot of 1 g of Pt powder (99.9%) was pelletized
with a stainless-steel die and melted with the arc furnace into an ingot.
Zr (ingot, 99%) was used as received. The ingots of Zr and Pt were
weighed such that the molar ratio was Zr:Pt = 1:3 and melted together
in the arc furnace to obtain the desired intermetallic ZrPt3. The final
product was finally annealed in vacuum at 1000 °C for 72 h.

2.2.3. Powder X-ray Diffractometry (pXRD). Powder X-ray
diffractometry (pXRD) was performed using Cu Kα radiation
(Panalytical X’Pert PRO; λ = 0.1548 nm) with an increment of 0.02
degrees in a range of diffraction angles from 20 to 80 degrees. An
obliquely finished Si crystal (nonreflection Si plate) was used as a
sample holder to minimize the background.

2.2.4. Hard X-ray Photoemission Spectroscopy (HX-PES). Hard X-
ray photoemission spectroscopy (HX-PES) was performed using an X-
ray with photon energy of 5.95 keV at BL15XU of SPring-8, Japan.
Sample powder was first dispersed in THF in air and dropped onto a
carbon substrate. The sample was thoroughly dried in air and
transferred into an ultrahigh-vacuum (UHV) chamber equipped with a
high-resolution electron spectrometer (VG Vacuum Generator,
Scienta R4000). The binding energy of photoelectrons was referenced
to the Fermi energy of an Au film that was electrically contacted to the
sample. Total energy resolution was set to 240 meV.

2.2.5. Transmission Electron Microscopy (STEM/TEM). We used a
200 kV transmission electron microscope (TEM and/or STEM, JEM-
2100F, JEOL) equipped with two aberration correctors (CEOS
GmbH) for the image- and probe-forming lens systems and an X-ray
energy-dispersive spectrometer (JED-2300T, JEOL) for compositional
analysis. Both the aberration correctors were optimized to realize the
point-to-point resolutions of TEM and scanning transmission electron
microscopy (STEM) as 1.3 and 1.1 Å, respectively. A probe
convergence angle of 29 mrad and a high-angle annular-dark-field
(HAADF) detector with an inner angle greater than 100 mrad were
used for HAADF-STEM observation. An ultrahigh-vacuum STEM
(UHV-STEM; TECNAI G2) was used to perform microscopic
observation of the morphology and particle size of the materials. The
samples for UHV-STEM were prepared by dropping a methanol
suspension of the sample powder onto a commercial TEM grid coated
with a collodion film. The sample was thoroughly dried in vacuum
prior to observation.

2.6. Electrochemistry. A glassy carbon (GC) electrode (5 mm in
diameter, Hokuto Denko) was polished prior to use with alumina
paste (0.06 μm) over a Milli-Q-water-wetted microcloth (Buhler). The
GC electrode was rinsed with Milli-Q water and finally dried in air. An
aliquot of 4.2 mg of the sample powder was suspended in a mixture of
1745 μL of distilled water, 440 μL of isopropyl alcohol, and 18 μL of a
5% w/w lower aliphatic alcohols−water solution of Nafion (EW: 1100,
Aldrich). After sonication for 60 min, the suspension was dropped
onto the GC electrode and dried at 60 °C in air. The GC electrode
surface was finally coated with 0.29 mg cm−2 of the sample powder.

Cyclic voltammetric (CV) measurements were performed using a
computer-controlled electrochemical system (HSV-100, Hokuto
Denko) in a three-electrode, two-compartment electrochemical cell
(main compartment volume =100 mL, PINE). A Pt wire and an Ag/
AgCl electrode (4 M KCl solution) were used as the counter electrode
and the reference electrode, respectively. All the voltammograms were
acquired at room temperature (23 ± 1 °C) and at a potential sweep
rate of 10 mVs−1.The electrochemical surface area (ECSA) of the

Scheme 1. Transformation of ZrPt3 NPs from Cubic to
Hexagonal Bulk Structures, Resulting in Activation of Fuel-
Oxidation Catalysis on the Surface
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sample was determined by adsorption/desorption of hydrogen
between −0.16 and +0.2 V, assuming 210 μCcm−2 for a monolayer
of adsorbed hydrogen on the platinum surface.
Before performing the electro-oxidation of ethanol/formic acid

(EtOH/HCOOH, Wako), background currents were first measured in
a deaerated 0.5 M aqueous solution of sulfuric acid (H2SO4, Wako).
The electro-oxidation of ethanol was then carried out in aqueous
solutions of 1.0 M EtOH/0.5 M H2SO4 and 1.0 M HCOOH/0.5 M
H2SO4, respectively. The solutions were deaerated with pure Ar gas for
30 min in prior to the measurements.
2.6. Theoretical Calculations. Electronic structure calculations

for cubic and hexagonal ZrPt3 were performed on the basis of density-
functional theory. The exchange-correlation energy functional was
represented by the generalized gradient approximation proposed by
Perdew−Burke−Ernzerhof.31 Projector-augmented wave pseudopo-
tentials were employed as implemented in the VASP code.32 The
valence configurations of the pseudopotentials were 5d9 6s1 for Pt and
4d2 5s2 for Zr. The energy cutoff for the plane-wave basis set expansion
was set at 500 eV. Monkhorst−Pack k-point sets of 10 × 10 × 10 were
used for a 4-atom unit cell of cubic ZrPt3 (space group Fm3 ̅m),
whereas 8 × 8 × 8 set was used for the 16-atom unit cell of hexagonal
ZrPt3 (space group P63/mmc). The optimized lattice parameters are as
follows a = 4.05 Å for cubic ZrPt3 and a = 5.73 Å, b = 5.73 Å, c = 9.35
Å, β = 120.00° for hexagonal ZrPt3.
The unit cells were extended for the creation of surface models of

cubic ZrPt3 (111) and hexagonal ZrPt3 (001). Our slab model of ZrPt3
(111) consists of 15 layers including 120 atoms in total. The seventh−
ninth layers were fixed during relaxations of surface geometries in
order for representing a bulk region. While a slab model of ZrPt3
(001) consists of 11 layers of ZrPt3 planes including 88 atoms in total.
The fifth−eighth layers were fixed during the surface relaxations. In
both cases, the thickness of a vacuum layer was set to 10 Å. For the
surface calculations, k-point sampling was set at 2 × 2 × 1. Atomic
positions of the slab modes were fully relaxed except for the fixed
layers until the residual force on each atom was converged to less than
0.02 eV/Å. Similarly, we have also performed calculations of Pt (111)
for comparison.
The surface energy (γ) was calculated from the following formula.

γ = −E NE A( )/(2 )slab bulk

where Eslab is the total energy of the slab and Ebulk is a total energy of
the bulk per unit. N and A are the number of units included in the slab
and the surface area, respectively.

3. RESULTS AND DISCUSSION
Figure 1A and B (Figures S1 and S2) shows the pXRD profiles
for the ZrPt3 NPs annealed at different temperatures. The
pXRD profile for the ZrPt3 NPs annealed at 900 °C is
consistent with a simulated reflection pattern for the cubic
CuAu3-type structure, indicating that the ZrPt3 NPs were
atomically ordered in the CuAu3-type structure (c-ZrPt3 NPs,
see inset for the structural model).29 The c-ZrPt3 NPs annealed
at 1000 °C showed a pXRD profile that matches with a
simulated pattern for a hexagonal TiNi3-type structure (h-ZrPt3
NPs, see inset for the structural model).30 The ZrPt3 NPs are
transformed from the cubic CuAu3-type- to the hexagonal
TiNi3-type structures at temperatures between 900 and 1000
°C. It is notable that the average interatomic distance between
Zr and the nearest-neighbor Pt atoms in the h-ZrPt3 NPs,
0.2815 nm, is shorter than that in the c-ZrPt3 NPs, 0.2841 nm.
The shorter Zr−Pt bond in the h-ZrPt3 NPs indicates that
chemical bond between Zr- and Pt atoms are stronger in the h-
ZrPt3 NPs than that in the c-ZrPt3 NPs.
Hard X-ray photoemission spectroscopy using synchrotron

radiation (HX-PES; photon energy = 5.95 keV) was performed
to further investigate the chemical state of the ZrPt3 NPs
(Figure 2A and B and Figure S3).33−35 Figure 2A presents the

photoemission spectra in the Zr 3d region. The bulk ZrPt3 and
h-ZrPt3 NPs showed Zr 3d5/2 and 3d3/2 photoemission peaks at
180.15 ± 0.20 and 182.53 ± 0.20 eV, respectively, which +1.2
eV shifted toward high binding energies with respect to the
corresponding peaks for elemental Zr, 178.83 ± 0.20 and
181.23 ± 0.20 eV, respectively. The observed shift in the Zr 3d
emission peaks is attributed to the formation of chemical bonds
between Zr and Pt, which weakens the charge screening of the
Zr 3d core hole to increase the binding energy of core
emissions.36 By contrast, the Zr 3d emission peaks for the c-
ZrPt3 NPs, which were situated at 179.90 ± 0.20 and 182.22 ±
0.20 eV, exhibited a +1.0 eV shift with respect to those of the
reference Zr metal. This binding-energy shift in the Zr 3d
emissions for the c-ZrPt3 NPs is 20% smaller than that for the
h-ZrPt3 NPs or bulk ZrPt3. The Zr−Pt bonds in the c-ZrPt3
NPs are, as indicated by the structural analysis on the pXRD
data, weaker than those in the h-ZrPt3 NPs or bulk ZrPt3. The
formation of Zr−Pt bonds also increases the binding energies
of the Pt-core emissions from the ZrPt3 materials (Figure 2B).
The bulk ZrPt3 and the h-ZrPt3 NPs showed the Pt 4f7/2 and
4f5/2 photoemission peaks at 71.61 ± 0.20 and 74.96 ± 0.20 eV,
respectively, which shifted by +0.58 eV toward high binding
energies with respect to the corresponding peaks for bulk Pt,
71.03 ± 0.20 and 74.38 ± 0.20 eV, respectively. The Pt 4f
emission peaks for the c-ZrPt3 NPs, which were situated at
71.41 ± 0.20 and 74.76 ± 0.20 eV, exhibited a smaller shift,
+0.38 eV with respect to those for bulk Pt. This small binding-
energy shift in the Pt core emissions confirms that the Zr−Pt

Figure 1. (A) pXRD pattern of the c-ZrPt3 NPs, annealed at 900 °C
and (B) pXRD pattern of the h-ZrPt3 NPs, annealed at 1000 °C.
Simulated pXRD peaks for hexagonal (red lines) and cubic (blue lines)
ZrPt3 are shown by solid markers at the bottom. The inset shows the
unit cells of c-ZrPt3 and h-ZrPt3 (where blue balls denote Zr and red
balls denote Pt atoms).

Figure 2. (A and B) HX-PES spectra of the c-ZrPt3 and h-ZrPt3 NPs
in the Zr 3d and Pt 4f regions, respectively. HX-PES spectra of bulk Pt,
bulk Zr, and bulk ZrPt3 are also shown as a reference.
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bonds in the c-ZrPt3 NPs are weaker than those in the h-ZrPt3
NPs.
Figure 3A presents a transmission electron microscopy

(TEM) image of c-ZrPt3 NPs, of which average particle size was
around 100 nm. The high-angle annular dark field (HAADF)
image of the c-ZrPt3 NPs (Figure 3B) and the corresponding
fast Fourier-transformation pattern (FFT, Figure 3C) are
consistent with the atomic arrangement expected for the cubic
AuCu3-type structure. The scanning-transmission electron
microscopy (STEM) image, accompanied by compositional
mapping for Zr and Pt, demonstrates uniform distribution of Zr
and Pt over the NPs in a mole ratio, Zr:Pt = 23.1:76.9 as
expected for ZrPt3 (Figure 3D−F, Figure S4). Figure 4A
presents the STEM image of the h-ZrPt3 NPs, which had an

average particle size less than 200 nm. The HAADF/STEM
images (Figure 4B) and the corresponding FFT pattern (Figure
4C) indicate that the Zr and Pt atoms are arranged in the
TiNi3-type structure. Compositional mapping and STEM
images demonstrate the uniform distribution of Zr and Pt
over the h-ZrPt3 NPs in the expected mole ratio, Zr:Pt =
25.3:74.7 (Figure 4D−F, Figure S5). Moreover, detailed FFT
analysis at different areas of the high-resolution STEM images
(Figure S6) has demonstrated that the surface atomic
arrangement of the c-ZrPt3 NPs and of the h-ZrPt3 was
identical to that in the bulk, showing that the surface of the NPs
are free from Pt-skin. Based on the pXRD and TEM/STEM
characterization, we conclude that both the c-ZrPt3 and h-ZrPt3
NPs are uniformly consisted of Zr and Pt at the molar ratio of

Figure 3. (A) TEM image, (B) HAADF-STEM image, and (C) FFT pattern of part B. (D) STEM image and corresponding EDS mapping of the c-
ZrPt3 NPs for (E) Pt and (F) Zr.

Figure 4. (A) TEM image, (B) HAADF-STEM image, (C) FFT pattern of part B. (D) STEM image and corresponding EDS mapping of the h-ZrPt3
NPs for (E) Pt and (F) Zr.
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Zr:Pt = 1:3, but ordered in the different AuCu3-type and TiNi3-
type structures, respectively. The difference in the bulk
structure, as elucidated by structural analysis and HX-PES,
results in the different strength of Zr−Pt bonds: the Zr−Pt

bonds in the h-ZrPt3 NPs are stronger than those in the c-ZrPt3
NPs.
Electrochemical activity and long-term stability for the

oxidation of ethanol and formic acid were investigated for

Figure 5. (A) Ethanol oxidation polarization curves for Pt/C and c-ZrPt3 and h-ZrPt3 NPs in 1 M ethanol/0.5 M H2SO4 solution at a scan rate of 10
mV s−1. (B) Summary of the specific activities for ethanol electro-oxidation at the peak potentials. (C) Normalized current densities for ethanol
electrooxidation as functions of number of potential cycles.

Figure 6. (A) Formic acid oxidation for Pt/C and c-ZrPt3 and h-ZrPt3 NPs in 1 M formic acid/0.5 M H2SO4 solution at a scan rate of 10 mV s−1. (B)
Comparison of the specific activities for formic electro-oxidation at the peak potentials. (C) Normalized current densities for formic acid
electrooxidation as functions of number of potential cycles.
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commercial carbon-supported Pt NPs (Pt/C, E-TEK), the c-
ZrPt3 NPs and h-ZrPt3 NPs. All the electrochemical measure-
ments were performed at room temperature in 0.5 M H2SO4
aqueous solution which contained 1 M of fuel. Figure 5A shows
the cyclic voltammographs (CV) for ethanol electro-oxidation
over the different catalysts. All the currents, which correspond
to the 10th cycle of the CV, are normalized to the calculated
ECSA (Figure S8). The electro-oxidation peaks on the anodic
scan for the c-ZrPt3 NPs were slightly more intense than the
corresponding peaks for the Pt/C, showing slight enhancement
in the electrocatalytic activity. By vast contrast, the electro-
oxidation peak for the h-ZrPt3 NPs were 2-fold more intense
than the corresponding peak for the c-ZrPt3 NPs or Pt/C,
demonstrating significantly enhanced catalytic activity of the h-
ZrPt3 NPs (Figure 5B). Figure 5C shows the results of
durability tests on the different catalysts. The current densities
at the peak maxima for the Pt/C and c-ZrPt3 NPs diminished
by 72% and 66%, respectively, after 200 electrochemical cycles.
By contrast, the h-ZrPt3 NPs showed only a 40% decrease in
the current density during the repeated cycles (Figure S9).
Moreover, the h-ZrPt3 NPs exhibited higher electro-oxidation
activity (peak current: 0.886 mA cm−2) than the Pt/C (peak
current: 0.455 mA cm−2) or the c- ZrPt3 NPs (peak current:
0.611 mA cm−2) (Figures 6A, B) for the electro-oxidation of
formic acid. The current density over the h-ZrPt3 NPs
decreased more slowly during the repeated potential scans
than that of the Pt/C and c-ZrPt3 NPs. It is demonstrated from
the specific-activity plot (Figure 6C, Figure S10) that the h-
ZrPt3 NPs remained the best catalyst for the electro-oxidation
of formic acid in terms of the catalytic activity and durability.
The corresponding mass-activity plots are presented in Figure
S11.
To investigate the surface-poisoning effect, CO-stripping

experiment was carried out at room temperature in 0.5 M
H2SO4 at a scan rate of 10 mV s−1. The Pt/C NPs exhibited a
prominent CO-stripping peak at +0.66 V (Figure 7), whereas

the c-ZrPt3 NPs and h-ZrPt3 NPs exhibited peaks at +0.62 and
+0.56 V, respectively. The onset potential of CO-stripping for
the h-ZrPt3 NPs was lower than those for the c-ZrPt3 NPs and
Pt/C, demonstrating that the h-ZrPt3 NPs are tolerant to CO
poisoning.
HX-PES and pXRD analysis have shown that the Zr−Pt

bonds in the h-ZrPt3 NPs are stronger than in c-ZrPt3 NPs,
which in turn results in the increased surface energy of the h-
ZrPt3 NPs. Indeed, computational calculations have supported
that the surface energy of the most-stable facet of the h-ZrPt3
NPs, 1.47 J m−2, is higher than those of the c-ZrPt3 NPs, 1.34 J

m−2. It is widely known that metal NPs with high-energy
surfaces exhibit high catalytic performance.37−39 The observed
enhancement in the electro-oxidation activity of the h-ZrPt3
NPs may be attributed to the increased surface energy, which
may promote adsorption/decomposition of ethanol/formic
acid molecules on the surface. Importantly, this increase in the
surface energy of the h-ZrPt3 NPs is compensated by lowering
in the bulk free energy, retaining the stability of the catalyst: the
amplitude of the formation enthalpy for the h-ZrPt3, ΔHf =
−100.8 kJ mol−1 of Zr, is larger than that for the c-ZrPt3, ΔHf =
−99.8 kJ mol−1 of Zr.40

■ CONCLUSION
In conclusion, we have successfully synthesized differently
ordered ZrPt3 NPs with the cubic CuAu3-type structure (c-
ZrPt3 NPs) and the hexagonal TiNi3-type structure (h-ZrPt3
NPs) by promoting bulk-structural transformation through
controlled annealing. It was demonstrated that the h-ZrPt3 NPs
exhibit better catalytic performance than the c-ZrPt3 NPs, in
terms of the enhanced electro-oxidation activity toward
ethanol/formic acid and improved stability to repeated
electrochemical cycles. The enhanced catalytic performance of
the h-ZrPt3 NPs originates from the bulk-structural trans-
formation from the cubic to the hexagonal structures, which
elevates the surface energy in compensation for the lowering in
bulk free energy. The successful development of the ZrPt3 NPs
will open up a new route to bulk-structure-tailored metal
catalysts, which may compromise the mutually exclusive
properties desired for catalysts: the high surface energy for
high catalytic activity and the low bulk free energy for long-
term stability.
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